Re: [微分] 兩題 QQ

看板trans_math作者 (當重考生好累)時間19年前 (2006/11/14 22:52), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《xx52002 (長門有希好萌(′▽‵))》之銘言: : (1)Suppose the function f has the property that │f(x) - f(t)│≦│x-t│ : for each pair of points x,t in the interval (a,b). : Prove that f is continuous on (a,b) : (2)Given that f and g are continuous functions on [a,b], and the f(a)>g(a) : and g(b)>f(b), show that there exists at least one number c 屬於 (a,b) : such that f(c) = g(c) : 拜託各位了 QQ (1) 令 h→0 such that |f(x+h)-f(x)|≦|(x+h)-x|=|h| (移項可得) | f(x+h)-f(x) | => |lim ______________| ≦ 1 => |f'(x)|≦ 1 ∴ f'(x) 於(a,b)存在 |h->0   h |   f(x)-f(t)  ∴ lim f(x) = lim{〔 ____________ × (x-t)〕+ f(t)}=f'(x)× 0 +f(t) x->t x->t x-t = f(t) 極限存在 for t in (a,b)  ∴ f 連續 on (a,b) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.62.121.187

11/15 07:47, , 1F
感謝 Q<>Q
11/15 07:47, 1F
文章代碼(AID): #15MTX7_P (trans_math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
文章代碼(AID): #15MTX7_P (trans_math)