Re: 急問....

看板trans_math作者時間19年前 (2006/07/16 14:27), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串2/3 (看更多)
※ 引述《puppy110330 (慵懶的葉子)》之銘言: : 1.use the double integral to find the volume of tetrahedron bounded by the : planes x+y+z=1 x=0 y=0 z=0 : 2.let F(x.y)=ln(y/x) find themaximum value of directional derivative of f : at the point (4.2) : 3.find the limit lim(1/n+1 + 1/n+2 +...........+ 1/n+n) : n->00 : 4.the tangent line of F(x.y)=x^3-2x^2+x+1 is parallel to y=5x+3 : at x=? : 5.a linear approximation of f(x)=(x+3)^1/2 at a=1 is?????? 3. lim (1/n)[(n/n+1) + (n/n+2)+ ... (n/n+n)] n->00 = lim (1/n){1/[1+(1/n)] + 1/[1+(2/n)] + ... 1/[1+(n/n)]} n->00 1 =∫dx/(1+x) 0 1 =log│1+x│▕ 0 =log2-log1 =log2 # 5. 只須代入一階泰勒展開式f(x)≒ f(1) + [f'(1)/1!](x-1)^2 # -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 211.76.47.253

07/16 14:35, , 1F
寫錯!是f(x)≒ f(1) + [f'(1)/1!](x-1)才對!
07/16 14:35, 1F
文章代碼(AID): #14kTn8Oi (trans_math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 3 篇):
文章代碼(AID): #14kTn8Oi (trans_math)