Re: [多變] 台大90B
※ 引述《MaSheep (MaSheep~~)》之銘言:
: 請教各位謝謝>_<
: .
(1).若點(x,y)受限制於方程式(x-1) ^2+y^2=25,則函數f(x,y)=3x+4y-3
的相對極大和極小值為何?
2 2
令 F(x,y) = 3x + 4y - 3 - λ[(x - 1) + y - 25]
Fx = 3 - 2λ(x - 1) = 0 3 4
=> => λ = ---------- = ----
Fy = 4 - 2λy = 0 2(x - 1) 2y
所以 3y = 4(x - 1)
2 2
3y = 4(x - 1) 9y 2 25y
=> ---- + y = 25 => ----- = 25
2 2 16 16
(x - 1) + y = 25
所以 y = 4 , -4 => (x,y) = (4,4) , (-2,-4)
f(4,4) = 3*4 + 4*4 - 3 = 25 ......相對極大值
f(-2,-4) = 3*(-2) + 4*(-4) - 3 = -25 ......相對極小值
(2).若A為拋物線y=6x-x^2及直線y=x所為成的封閉區域,則A的形心為?
∫∫xdA ∫∫ydA
R R
形狀中心 = ( --------- --------- )
A , A
5 6x - x^2
A = ∫ ∫ dydx
0 x
5 |y = 6x - x^2
= ∫ y | dx
0 |y = x
5 5 1 |5 125
= ∫ (5x - x^2) dx = ( ---x^2 - ---x^3 ) | = -----
0 2 3 |0 6
5 6x - x^2
∫∫xdA = ∫ ∫ xdydx
R 0 x
5 |y = 6x - x^2
= ∫ x*y | dx
0 |y = x
5
= ∫ (5*x^2 - x^3) dx
0
5 1 |5 625
= ( ---x^3 - ---x^4 ) | = -----
3 4 |0 12
5 6x - x^2
∫∫ydA = ∫ ∫ ydydx
R 0 x
5 1 |y = 6x - x^2
= ∫ (---)*(y^2) | dx
0 2 |y = x
1 5
= (---)*∫ [(6x - x^2)^2 - x^2] dx
2 0
1 5
= (---)*∫ (x^4 -12*x^3 + 35*x^2) dx
2 0
1 1 35 |5
= (---)*(---x^5 - 3*x^4 + ----x^3)|
2 5 3 |0
1 4375 625
= (---)*(625 - 1875 + ------) = -----
2 3 6
625 625
----- -----
12 6 5
所以形狀中心 = ( ----- , ----- ) = ( --- , 5 )
125 125 2
----- -----
6 6
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.66.173.21
討論串 (同標題文章)