Re: [考古] 三題泰勒級數

看板trans_math作者 (^______^)時間20年前 (2005/07/21 00:04), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/3 (看更多)
※ 引述《ying1019 (烤生...歡迎丟我水球!!)》之銘言: [79年清華理工] ∞ An n Suppose that ln(1+x)=Σ ------- x ,( |x|﹤1 ), where An's are constants. n=1 n ∞ An Then A = ? , and Σ ------------ = ? 此題的第二小題不懂~~ 20 n=1 2^n*n(n+1) 第二小題的解法如下: ∞ An n 已知 ln(1+x)=Σ ------- x n=1 n x x ∞ An n ∞ An x n => ∫ ln(1+t)dt = ∫ Σ ------- t dt = Σ ------- ∫ t dt 0 0 n=1 n n=1 n 0 n+1 |x ∞ An t |x => [(1+t)ln(1+t) - (1+t)]| = Σ ------- (-----)| |0 n=1 n n+1 |0 n+1 ∞ (An)*(x ) => (1+x)ln(1+x) - x = Σ ------------- n=1 (n+1)n 1 令 x = --- 代入上式得 2 ∞ An 1 n+1 3 3 1 Σ --------(---) = ---ln(---) - --- n=1 (n+1)n 2 2 2 2 ∞ An 3 所以 Σ ------------ = 3ln(---) - 1 n=1 2^n*n(n+1) 2 [89年交大資工] 2 Let f(x)=x(sinx) (a)Fund the power series representation of f(x) in powers of x (2001) (b)Find f (0) 2 (a) f(x) = x(sinx) 1-cos2x = (x)*(---------) 2 x xcos2x = --- - -------- 2 2 2 4 n 2n x x (2x) (2x) (-1) (2x) = --- - ---(1 - ------ + ------ - ...... + -------------- + ......) 2 2 2! 4! (2n)! 3 3 5 n+1 2n-1 2n+1 2x 2 x (-1) 2 x = ---- - ------- + ...... + --------------------- + ...... 2! 4! (2n)! n+1 2n-1 2n+1 ∞ (-1) 2 x = Σ ---------------------       n=1 (2n)! (b) 2n + 1 = 2001 => n = 1000 (2001) f (0) = (2001!)*(a_2001) 1001 1999 (-1) 2 1999 = (2001!)*(----------------) = -(2001)*(2 ) (2000)! [89台大c] 3 x (n) 設f(x)=x e ,則f在x=0的n次導數f (0)= ? f(x) = (x^3)*(e^x) 1 1 = (x^3)*(1 + x + ---x^2 + ...... + ---x^n + ......) 2! n! x^2 x^(n+3) = x^3 + x^4 + ----- + ...... + --------- + ...... 2! n! ∞ x^(k+3) = Σ --------- (令 n = k+3 => k = n-3) k=0 k! ∞ x^n = Σ --------- n=3 (n-3)! 1 所以 a_n = -------- , a_0 = a_1 = a_2 = 0 (n-3)! (n) 1 f (0) = (n!)*(a_n) = (n!)*(--------) = n(n-1)(n-2) , n≧3 (n-3)! (n) 而 f (0) = 0 , n = 0,1,2 : 感謝之前大家的幫忙,感恩嘿!! : ※ 編輯: ying1019 來自: 210.58.172.85 (07/21 00:00) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.66.173.21

210.58.172.85 07/21, , 1F
好強唷!!感謝耶~~
210.58.172.85 07/21, 1F
文章代碼(AID): #12tdOE0B (trans_math)
文章代碼(AID): #12tdOE0B (trans_math)