Re: [考古]5題 台大93學年
※ 引述《JackieYu (聽不到)》之銘言:
: 就快轉系考了
: 心急如焚請好心人幫忙
: 拜託高手賜教 Orz(泣)
: http://homepage.ntu.edu.tw/~b92501063/a.jpg

1. (e^x - 1)^3
lim -------------------
x->0 (x -2)e^x + x + 2
[3(e^x - 1)^2]*(e^x)
= lim ----------------------
x->0 e^x + (x - 2)e^x + 1
[6(e^x - 1)e^x]*(e^x) + [3(e^x - 1)^2]*(e^x)
= lim ---------------------------------------------
x->0 e^x + e^x + (x - 2)e^x
[6(e^x - 1)e^x] + [3(e^x - 1)^2]
= lim ----------------------------------
x->0 x
[6(e^x)(e^x) + 6(e^x - 1)e^x] + [6(e^x - 1)e^x]
= lim ------------------------------------------------- = 6
x->0 1
x f(t)
4. 設連續函數f(x)滿足 6 + ∫ ------ dt = 2*((x)^(1/2))
a t^2
則 f(x) = _________ , a = ________
x f(t)
解:令 F(x) = 6 + ∫ ------ dt = 2*((x)^(1/2))
a t^2
a f(t)
則 F(a) = 6 + ∫ ------ dt = 2*((a)^(1/2))
a t^2
=> 6 = 2*((a)^(1/2)) => 3 = (a)^(1/2) => a = 9
f(x)
F'(x) = ------ = 2*(1/2)*((x)^(-1/2)) = (x)^(-1/2)
x^2
所以 f(x) = (x)^(3/2)
3 ln(x+1)
6. ∫ --------- dx
1 x^2
ln(x+1) |3 3 1 1
= - --------- | - ∫ (- ---)*(-----) dx x |1 1 x x+1
ln4 3 1 1
= - ----- + ln2 + ∫ (--- - -----) dx
3 1 x x+1
1 | x | |3
= ---ln2 + ln|-----| |
3 | x+1 | |1
1 3 1
= ---ln2 + ln--- - ln---
3 4 2
4 3 2
= ---ln2 + ln--- = - ---ln2 + ln3
3 4 3
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.66.173.21
推
140.127.179.227 07/10, , 1F
140.127.179.227 07/10, 1F
推
60.198.69.14 07/11, , 2F
60.198.69.14 07/11, 2F
→
60.198.69.14 07/11, , 3F
60.198.69.14 07/11, 3F
推
140.127.179.227 07/11, , 4F
140.127.179.227 07/11, 4F
推
60.198.69.14 07/11, , 5F
60.198.69.14 07/11, 5F
推
140.127.179.227 07/11, , 6F
140.127.179.227 07/11, 6F
推
60.198.69.14 07/11, , 7F
60.198.69.14 07/11, 7F
→
60.198.69.14 07/11, , 8F
60.198.69.14 07/11, 8F
→
60.198.69.14 07/11, , 9F
60.198.69.14 07/11, 9F
討論串 (同標題文章)