Re: [問題] 順序統計問題

看板Statistics作者 (有沒有那麼雖阿~~~)時間15年前 (2010/12/11 08:21), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《Hshs (免錢沒人愛@@)》之銘言: : Let X1 X2 X3 are the order statistics of the iid random variables X1 X2 and : X3 with common exponential distribution with mean 1/λ. Show that : Y1 = X3 - X2 and Y2 = X2 are independent : 請問一下該怎麼解呢? 謝謝. : 似乎是考古題,好像看過 f(x1,x2,x3)= 6 λ^3 exp (-λ(x1+x2+x3)) 0 < x1 < x2 < x3 < inf f(x2,x3) = ∫6 λ^3 exp (-λ(x1+x2+x3)) dx1 (積分範圍0< x1 < x2) f(x2,x3) = 6 λ^2 exp (-λx3) [exp (-λx2) - exp (- 2λx2) ] 0< x2 < x3 < inf Let Y1= X3 - X2 and Y2 = X2 ==> X3 = Y1 + Y2 (0 < Y2 < Y1+Y2 < inf) By Jacobian f(Y1,Y2)= 6 λ^2 exp (-λ(Y1+Y2)) [exp (-λY2) - exp (- 2λY2) ] * 1 = 6 λ^2 exp (-λY1) [exp (-2λY2) - exp (- 3λY2) ] 積分範圍可以拆成 0< Y1 < inf 跟 0 < Y2 < inf f(Y1,Y2) 可以拆成兩個 f(Y1) * f(Y2) 所以independent -- 不知道有沒有誤... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 160.39.4.106
文章代碼(AID): #1D0iF_eU (Statistics)
討論串 (同標題文章)
文章代碼(AID): #1D0iF_eU (Statistics)