Re: [問題] 請教一題統計的問題:

看板Statistics作者 (無情的雨)時間16年前 (2010/02/02 00:16), 編輯推噓2(201)
留言3則, 2人參與, 最新討論串3/3 (看更多)
先定事件: 會倒債:D 良好評價:F c c 不會倒債:D 不良的評價:F ※ 引述《jeffho (yeungwailei)》之銘言: : A customer has approached a bank for a loan. From the past experience, the : bank believes there is a 10% chance that the customer will default on the 可知P(D)=0.1 : loan. The bank can run a credit check on the customer. The credit check will : yield either a favorable or an unfavorable report. Historical information : shows that for those default customers, favorable reports were received 1 out : of 50 of the time. On the other hand, for those customers that were not default, P(F|D)=0.02 : favorable reports were received 95 out of 100 of the time. If a favorable report c 且P(F|D )=0.95 : is received, what is the probability (to 4 decimal places) that the customer : will default on the loan? : {Hint: Construct a contingent table of the above problem first.} : 小弟粗略翻譯了一下中文意思大概是這樣: : 一個顧客去問銀行借錢,根據過去經驗,銀行認為這傢伙有10%機會不還錢。 : 銀行可以給這人客做一個信用評估,然後這個評估會產生一個好的或是一個不好的報告, : 以過去的數據統計出,對於那些會逃債的人客。他們每50個報告只有1個是好的報告, : 而不會逃債的,是每100個報告有95個都是好的,現在我們對這位客人做信用評估, : 那麼請問如果他得出一個好的報告,他結果會逃債的機率是多少? 所求為P(D|F) 先劃出樹狀圖: c F ---D 因為P(D) = 0.1 => P(D ) = 0.9 \ \ c 又 P(F|D) = 0.02 = P(F交D)/P(D) => P(F交D) = 0.002 D c c c c 且 P(F|D ) = 0.95 = P(F交D )/P(D ) => P(F交D ) = 0.855 c c F ---D 所以P(F) = P(F交D) + P(F交D ) = 0.857 \ \ c D 而所求P(D|F) = P(D交F) / P(F) = 0.002/0.857 = 0.0023 # -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.165.44.80

02/02 00:42, , 1F
謝謝解答...我先洗個澡清醒一下再鑽研^^"
02/02 00:42, 1F

02/02 01:23, , 2F
完全弄明白了T_T 明天要交功課呢,謝謝你,你是我的救星><
02/02 01:23, 2F

02/02 12:17, , 3F
不客氣 取之於網路 回饋於網路
02/02 12:17, 3F
文章代碼(AID): #1BPlvkTp (Statistics)
文章代碼(AID): #1BPlvkTp (Statistics)