Re: [問題] Inverse Probability Integral Transfo …

看板Statistics作者 (ATN)時間16年前 (2009/09/23 23:12), 編輯推噓1(103)
留言4則, 4人參與, 最新討論串1/2 (看更多)
※ 引述《lookinforyou (Loving Kitty =))》之銘言: : 1. Show that the inverse probability integral transformation for the : exponential(theda) distribution is y = -(theda)ln(1-u) : <f(y) = exp[-y/theda] / theda> : 2. (continuation) If u is uniform(0, 1), deduce that -ln u is exponential(1) : or gamma(1); and that -2ln u is chi square(2) : 第一題我有導出來了 不過第二題一直想不出來... : 麻煩各位高手了...謝謝 u-->uniform(0, 1) let -ln u = t u=e^(-t) du/dt=-e^(-t) h(t)=f(u)|-e^(-t)|=e^(-t) ------>Exp(1) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.104.229.47

09/23 23:15, , 1F
最後一行等號右邊應該是f(u)?
09/23 23:15, 1F
※ 編輯: austinyung 來自: 59.104.229.47 (09/23 23:25)

09/23 23:26, , 2F
恩..已改正
09/23 23:26, 2F

09/23 23:26, , 3F
第二題一樣算法 算出來是gamma (1,2) = 卡方2
09/23 23:26, 3F

09/26 02:26, , 4F
THANK YOU!!!
09/26 02:26, 4F
文章代碼(AID): #1AkZhv_3 (Statistics)
文章代碼(AID): #1AkZhv_3 (Statistics)