[問題] martingale

看板Statistics作者 (請多指教)時間17年前 (2008/11/12 15:15), 編輯推噓4(401)
留言5則, 3人參與, 最新討論串1/2 (看更多)
1.let (ξ_n) be a sequence of iid Bernoulli random variables with generating n function M(t)=E[exp(tξ_1)]<∞ fot t≠0 and let X_n=Σξ_i i=1 prove that the sequence (Z_n) with Z_n=exp(tX_n)/M^n(t) is a martingale. 2.let X and Y be integrable random variables on a probability space (Ω,F,P) then we can decompose Y into Y=Y_1+Y_2 where Y_1=E[Y∣X] and Y_2=Y-E[X∣Y] (a) show that Y_2 and X are uncorrelated. (b)More general, show that Y_2 is uncorrelated with every σ(X)-measurable random variable. 想了很久解不出來的問題這此請教大家了 感謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.195.216.183

11/12 16:17, , 1F
請由定義下手,試試看囉!
11/12 16:17, 1F

11/13 00:50, , 2F
抱歉 小的就是走定義走不不出來才來發問的 
11/13 00:50, 2F

11/13 03:25, , 3F
1. \xi~B(p), X_n~B(n,p),by martingale定義證.
11/13 03:25, 3F

11/13 03:29, , 4F
2(a). Y_1=E[Y|X]=E[X|Y]=c,Y_2=Y-c indep. of X?
11/13 03:29, 4F

11/13 09:28, , 5F
試著把算是寫出來 在幫你看看卡在哪裡
11/13 09:28, 5F
文章代碼(AID): #196eAGza (Statistics)
討論串 (同標題文章)
文章代碼(AID): #196eAGza (Statistics)