Re: [問題] 分佈收斂

看板Statistics作者 (ideal)時間17年前 (2008/10/19 22:54), 編輯推噓1(104)
留言5則, 3人參與, 最新討論串2/2 (看更多)
Since {X_n}, {Y_n} are independent, (X_n,Y_n) converges to (X,Y) weakly (it's obvious from the two dimensional characteristic function). From the continuous mapping theorm (R^2->R^1), you can get X_n*Y_n converges weakly to XY, where X and Y are random variables whose distribution are F and G respectively. ※ 引述《wulingking (等的好辛苦)》之銘言: : X_n,Y_n相互獨立且c.d.f為F_n,G_n : 又F_n,G_n分佈收斂到F,G證F_nG_n分佈收斂到FG : 想法:因c.d.f.在0,1間...極限一定存在 : 故limF_nG_n=limF_n limG_n=FG : 又覺得怪怪的@@ : 請問有問題嗎 : 謝謝~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 76.124.84.13

10/19 23:34, , 1F
感謝!雖然看不太懂@@
10/19 23:34, 1F

10/20 03:33, , 2F
上面有人回了,用chf,那就是continuous function.
10/20 03:33, 2F

10/20 03:33, , 3F
所以在用這篇的continuous mapping thm就可以了.
10/20 03:33, 3F

10/20 03:33, , 4F
原po, 再考資格考嗎?
10/20 03:33, 4F

10/20 21:30, , 5F
他的ch.f是指特徵函數吧...
10/20 21:30, 5F
文章代碼(AID): #18-qeM_K (Statistics)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
文章代碼(AID): #18-qeM_K (Statistics)