Re: [問題] 回歸

看板Statistics作者 (寒窗苦讀)時間18年前 (2007/06/23 11:50), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串4/4 (看更多)
※ 引述《selient (左邊)》之銘言: : 若隨機抽樣A大學學生的 體重(y ,單位公斤) 身高(x ,單位公分) : ,若y對x做回歸 : y =βo + β1xi : (跑SAS資料省略我不是要問這個) : 如果單位改變 公克(y*) 公尺(x*) : 若y對x回歸式為 : y* = βo* + β1*x* y尺度改變,如y*=ay,則βo*=aβo,β1*=aβ1 x尺度改變,如x*=cx,則βo*=βo ,β1*=β1/c 上述關係請利用定義去推導, 即β1=Sxy/Sxx,而Sxx = sum(xi-x_bar)^2 ,Sxy = sum(xi-x_bar)(yi-y_bar) βo=y_bar-β1*x_bar 至於T檢定量則利用上述求得的β1與S_b1即可換算得到 : 那βo*跟βo、β1*與β1的關係式為何? : 還有就是若檢定 Ho: β1* = 0 : 則t值怎麼算? : 原本β1的t值是這樣: : b1-β1 Sε : t = ________ 其中 S_b1 = _________ : S_b1 √(n-1)Sx^2 : 但是變成要檢定β1* 但是我不清楚怎麼計算t值 : 請問要怎麼轉換呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.169.0.8

06/23 11:52, , 1F
β1=Sxy/Sxx
06/23 11:52, 1F
※ 編輯: fongliao 來自: 218.169.0.8 (06/23 15:05)
文章代碼(AID): #16V9Y8Fb (Statistics)
討論串 (同標題文章)
本文引述了以下文章的的內容:
問題
3
5
完整討論串 (本文為第 4 之 4 篇):
問題
1
1
問題
3
5
問題
問題
2
2
文章代碼(AID): #16V9Y8Fb (Statistics)