Re: 有關minimax的文章涵意?

看板Statistics作者時間19年前 (2006/09/10 15:13), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串3/3 (看更多)
minimax  是不是大中取小呀  是不是和決策樹有關呢? ※ 引述《winniewo.bbs@bbs.wretch.cc ()》之銘言: : ※ 引述《winniewo》之銘言: : 我換個方式問好了 : > 『Bayes estimator provide a tool for solving minimax problems. : 貝氏估計量提供了一個解決minimax問題的工具 : > Thus Bayesian considerations are helpful : > when choosing an optimal frequentist estimator. : 這句話看不大懂,什麼是"optimal frequentist estimator" : > Viewed in this light, there is a : > synthesis of the two approaches. : 由此觀點來看,就有一個兩種方法的"synthesis" : 什麼是 synthesis of the two approches. : > The Bayesian approach provides us with a mean of : > constructing an estimator that has : > optimal frequentist properties. : 貝式方法提供了我們 "with a mean of comstrcting" : 估計量擁有 "optimal frequentist" 性質. : > This synthesis highlights important features : > of both the Bayesian and frequentist : > approaches. : 這個"sythesis"突顯了貝式學與頻率學重要的特性 : > The Bayesian paradigm is : > well suited for the construction of : > possibly optimal estimators, but is : > less well suited for their evaluation. : 這句的意思不太了解 : (1)什麼是construction of possibly optimal estimator : (2)什麼是their evalustion : (3)為什麼貝式適合的是(1)而較不適合(2) : > The frequentist oaradigm is complementary, : > as it is well suited for risk evaluations, : > but less well suited for construction. : 這個問題也跟上面一樣...@@ : > It is important to view these two : > approaches and hence "Average risk : > optimality" and "Minimaxity and admissibility" : > as complementary rather than adversarial; : > together they provide a rich set of tools : > and techniques for the statisticaian. : 這是個對於在看這兩個方法是重要的, : 因此"平均風險最佳性"與"大中取小性和允許性" : 為互補的,而不是相互比較的,這兩個都同時提供了 : 統計學者一個好的工具與方法. : 這是在統計教本中講貝氏估計量與 : 大中取小估計量的一段文章,我不是學 : 這方面的東西,but考試要考啊~我也很想看懂 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.172.213.185
文章代碼(AID): #150xilWO (Statistics)
文章代碼(AID): #150xilWO (Statistics)