Re: 有關minimax的文章涵意?
minimax 是不是大中取小呀 是不是和決策樹有關呢?
※ 引述《winniewo.bbs@bbs.wretch.cc ()》之銘言:
: ※ 引述《winniewo》之銘言:
: 我換個方式問好了
: > 『Bayes estimator provide a tool for solving minimax problems.
: 貝氏估計量提供了一個解決minimax問題的工具
: > Thus Bayesian considerations are helpful
: > when choosing an optimal frequentist estimator.
: 這句話看不大懂,什麼是"optimal frequentist estimator"
: > Viewed in this light, there is a
: > synthesis of the two approaches.
: 由此觀點來看,就有一個兩種方法的"synthesis"
: 什麼是 synthesis of the two approches.
: > The Bayesian approach provides us with a mean of
: > constructing an estimator that has
: > optimal frequentist properties.
: 貝式方法提供了我們 "with a mean of comstrcting"
: 估計量擁有 "optimal frequentist" 性質.
: > This synthesis highlights important features
: > of both the Bayesian and frequentist
: > approaches.
: 這個"sythesis"突顯了貝式學與頻率學重要的特性
: > The Bayesian paradigm is
: > well suited for the construction of
: > possibly optimal estimators, but is
: > less well suited for their evaluation.
: 這句的意思不太了解
: (1)什麼是construction of possibly optimal estimator
: (2)什麼是their evalustion
: (3)為什麼貝式適合的是(1)而較不適合(2)
: > The frequentist oaradigm is complementary,
: > as it is well suited for risk evaluations,
: > but less well suited for construction.
: 這個問題也跟上面一樣...@@
: > It is important to view these two
: > approaches and hence "Average risk
: > optimality" and "Minimaxity and admissibility"
: > as complementary rather than adversarial;
: > together they provide a rich set of tools
: > and techniques for the statisticaian.
: 這是個對於在看這兩個方法是重要的,
: 因此"平均風險最佳性"與"大中取小性和允許性"
: 為互補的,而不是相互比較的,這兩個都同時提供了
: 統計學者一個好的工具與方法.
: 這是在統計教本中講貝氏估計量與
: 大中取小估計量的一段文章,我不是學
: 這方面的東西,but考試要考啊~我也很想看懂
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.172.213.185
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 3 篇):