Re: [問題] 北科工管91考題

看板Statistics作者 (悼念~娃娃)時間19年前 (2006/05/04 14:45), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《wolf035 (阿榮)》之銘言: : 1. prove that if X~N(u,sigma^2) and let Z= x-u/sigma then Z have : mean = 0 and standard deviation = 1 : 2. If the random variable X has an exponential distribution with : parameter lamda. Find the probability that X greater than its mean. 1. X ~ N(μ,σ^2) , the m.g.f. of X is Mx(t)= E[exp (tX)] = exp (μt+σ^2 *t^2 / 2) Z = (X-μ)/σ, the m.g.f. of Z is Mz(t)= E[ exp (tZ) ] = E{ exp [t(X-μ)/σ] } = E{ exp(tX/σ) *exp(-tμ/σ) } = E{ exp [(t/σ)X] } *exp(-μt/σ) = Mx(t/σ) *exp(-μt/σ) = exp[μ*(t/σ)+σ^2 *(t/σ)^2 / 2 ] *exp(-μt/σ) = exp(t^2 / 2) since the m.g.f. uniquely determines the distribution, we know that Z ~ N(0,1) 2. X ~ Exp(λ), Mx(t)= 1 / (1- t/λ), t < λ Mx'(t) = (1/λ) / (1- t/λ)^2 E[X]= Mx'(0)= 1/λ Pr(X > 1/λ) = ∫(下界為 1/λ,上界為∞) λ *exp(-λx) dx = [-exp(-λx)] (下界為 1/λ,上界為∞) = 1 / e 第一題也可用d.f.法來求,只是要用到積分式的微分覺得表示起來不方便, 所以用m.g.f.法,比較好表示也比較快 這是我第一次在 BBS上 po數學解法,可能有點亂,希望您看得懂 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.120.6.242
文章代碼(AID): #14MQCGin (Statistics)
討論串 (同標題文章)
文章代碼(AID): #14MQCGin (Statistics)