Re: [問題] 高中數學問題
原式為Σ(1/Σk(k+1))
而分母的Σk(k+1)=Σ(k^2+k)=Σk^2+Σk
=p(p+1)(2p+1)/6 + p(p+1)/2
=p(p+1)(2p+1)/6 + 3p(p+1)/6
=p(p+1)(2p+1+3)/6
=p(p+1)(2p+4)/6
=p(p+1)(p+2)/3
所以原式變成了Σ(1/(p(p+1)(p+2)/3))
=Σ(3/p(p+1)(p+2))
到這裡 答案呼之欲出:
Σ(3/p(p+1)(p+2))
=Σ(3/2(1/(p(p+1))-1/((p+1)(p+2))))
=2/3(1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)...-1/(n(n+1))+1/(n(n+1))-1/((n+1)(n+2)))
=2/3(1/2-1/(n+1)(n+2))
=後面就是通分了=(3n(n+3))/(4(n+1)(n+2))
用ptt打這種答案真是他....的麻煩...
※ 引述《iancc (ian)》之銘言:
: 目前自修中, 想請教各位一題數學,若是可以解開真是幫大忙!
: 1/(1*2)+ 1/(1*2+2*3)+1/(1*2+2*3+3*4)+......+ 1/(1*2+2*3+3*4+...+9*10)+= q/p
: 我想了好久都找不出她們的一般項
: 請數學好手幫個忙囉, 謝謝!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 125.227.225.221
推
03/28 22:18, , 1F
03/28 22:18, 1F
噓
03/29 10:05, , 2F
03/29 10:05, 2F
推
03/29 22:32, , 3F
03/29 22:32, 3F
→
04/01 15:35, , 4F
04/01 15:35, 4F
推
04/06 16:42, , 5F
04/06 16:42, 5F
討論串 (同標題文章)