討論串[問題] 均勻帶電球面外部電場
共 3 篇文章
首頁
上一頁
1
下一頁
尾頁

推噓0(0推 0噓 0→)留言0則,0人參與, 最新作者qna (freely falling)時間14年前 (2012/02/22 00:01), 編輯資訊
0
0
0
內容預覽:
軸對稱對phi積分 先寫成2pi比較清楚. 令Z-R=Y 再令y=|Y|. 電場直接投到z軸寫成Ez 也會比較簡單 就不用管向量. 投影要多乘cos(alpha). |E| = 2pi*r^2*ps/4pie0 ∫ sin(theta)cos(alpha)d(theta)/y^2. z^2+r^2-
(還有296個字)

推噓0(0推 0噓 0→)留言0則,0人參與, 最新作者hydrasmith31 (或許死亡才是最好的解脫)時間14年前 (2012/02/21 22:17), 編輯資訊
0
0
0
內容預覽:
※1 引述《mathptt (math)》之銘言: ^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^. Z、R 其實是向量函數 R的方向還跟theta有關. 而你(Z^2 + r^2 -2Zrcos(theta)^(-3/2)怎麼積的也沒說

推噓0(0推 0噓 0→)留言0則,0人參與, 最新作者mathptt (math)時間14年前 (2012/02/21 21:17), 編輯資訊
0
0
0
內容預覽:
求位於點P(0,0,z)之電場. 若以球面上各點對於P點之電場做直接積分(不用高斯定律),則. ps : 面電荷密度. e0 : 介電常數. Z : 向量Z(圓心到點z之向量). R : 向量R(圓心到面電荷之向量). z : 向量Z大小. r : 向量R大小. theta : 從0到pi. phi
(還有108個字)
首頁
上一頁
1
下一頁
尾頁