Re: [請益] 關於Pauli matrices
※ 引述《njvulfu (njvulfu)》之銘言:
: 各位大大好,
: 小弟初學量力,
: 對於Pauli matrices σ有一些不解之處,
: 所以,想請問:
: det(σ)=-1 & Tr(σ)=0 ,
: 以上這兩個特性有無任何物理意義?
我應該寫清楚一些
e^{iσ‧a} belongs to SU(2)
we call σ the generators of SU(2)
Why U ? because probability is conserved.
Why S ? because it comes from proper rotation.
then e^{-iσ^h‧a} e^{iσ‧a} = I
hence σ hermitian (sorry, ren1072 is right)
det(e^{iσ‧a}) = 1 = lim_{N→∞} det(I+(iσ‧a)/N)^N
=lim(1 + Tr(iσ‧a)/N + O(1/N^2))^N = e^{Tr(iσ‧a)}
hence, Tr(iσ‧a) = 0
however, a is arbitrary, then σ traceless
可查關鍵字 SU(2)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 27.147.57.77
推
12/10 17:10, , 1F
12/10 17:10, 1F
→
12/10 17:11, , 2F
12/10 17:11, 2F
→
12/10 17:39, , 3F
12/10 17:39, 3F
→
12/10 19:14, , 4F
12/10 19:14, 4F
→
12/10 19:55, , 5F
12/10 19:55, 5F
The definition of S
→
12/10 19:58, , 6F
12/10 19:58, 6F
→
12/10 20:01, , 7F
12/10 20:01, 7F
→
12/10 20:08, , 8F
12/10 20:08, 8F
※ 編輯: JohnMash 來自: 27.147.57.77 (12/10 20:22)
→
12/11 06:43, , 9F
12/11 06:43, 9F
→
12/11 06:44, , 10F
12/11 06:44, 10F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 5 篇):