[微積分]考古題

看板NTUBIME103HW作者 (steve)時間15年前 (2011/01/08 14:46), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
九六期末第三題的B B) Let f'(x) = kf(x) for all x in some interval. Prove that f(x) = Ce^kx , where C is an arbitrary constant. 兩個證明方法 (M1) set f(x)=ce^kx => f'(x)=kce^kx=k*f(x) (M2) 這題其實是Seperable ODE set y=f'(x) we can rewrite the equation as follow dy ---- = k y dx seperate x y dy ---- = k dx y intergrate both sides ln y = kx + C => y= e^(kx+C) = e^kx * e^C = C' e^kx (((C'=e^c))) 然後cross section perpendicular to the x-axis就是截面積跟x軸垂直 繞著X軸旋轉的意思 以上 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.132.83.187

01/08 14:50, , 1F
神!!!
01/08 14:50, 1F
文章代碼(AID): #1DA0X44o (NTUBIME103HW)
文章代碼(AID): #1DA0X44o (NTUBIME103HW)