[微積] 汗水期末考古

看板NTUBIME100HW作者時間17年前 (2008/06/13 20:52), 編輯推噓5(5034)
留言39則, 4人參與, 最新討論串1/3 (看更多)
一 Find a point on the surface z = 8 - 3x^2 - 2y^2 at which the tangent plate is perpendicular to the line x = 7 - 3t, y = 12 + 8t, z = 10 - t.(20%) 二 Let D={(x,y,z) | x^2 + y^2 + z^2 <= 90} be a solid and the temperature at the point (x,y,z) on the D is T(x,y,z) = 3xy + 4x^2 + z^2. 三 Let D = {(x,y,z) | x^2 + y^2 + z^2 <= 49, z >= 2} be a solid with the density den(x,y,z) = 2z. (i)Find the volume of D.(7%) (ii)Find the mass of D.(8%) (iii)Find the center of mass of D.(10%) 3 √(9+x^2) 四 Find the integral ∫ [∫ √(x^2 + y^2) dy] dx.(10%) 0 0 [Hint: Use polor coordinates] 五 Let D be the triangular region bounded by 3 lines x = 0, y = 2, x - 2y = 0, and C = (偏微分)D be the bounary of D. Find the line integral ∫ (x + 2xy)dx + (x^2 + 3x)dy.(15%) c 其實我是為了求解答才發文的 我相信大家手上都有了 我期末考考古題第一題題目就看不懂 聽了華均的說明還是不會做 第二題我也不會做 為什麼我的z自動消掉ꐨ汗) 第三題我用 E={(ρ,φ,θ) | 2secφ <= ρ <= 7, 0 <= φ <= arccos(2/7), 0 <= θ <= 2π}解 (算式很長 PTT很糟 跳下面問題看比較快) ----------------------------------------------------------------- arccos(2/7) 7 2π ∫ ∫ [∫ ρ^2*sinφ dθ] dρ dφ 0 2secφ 0 ----------------------------------------------------------------- arccos(2/7) 7 =2π∫ [∫ ρ^2*sinφ dρ] dφ 0 2secφ ----------------------------------------------------------------- arccos(2/7) =2π∫ [(1/3)*7^3*sinφ - (1/3)*(2secφ)^3*sinφ] dφ 0 ----------------------------------------------------------------- arccos(2/7) =2π∫ [(1/3)*7^3*sinφ] dφ 0 arccos(2/7) - 2π∫ [(1/3)*(2secφ)^3*sinφ] dφ 0 ----------------------------------------------------------------- arccos(2/7) =2π*(sin(arccos(2/7)))*7^3 - 2π*(2/3)∫ [(secφ)^3*sinφ] dφ 0 ----------------------------------------------------------------- arccos(2/7) =2π*3√5*7^3 - 2π*(2/3)∫ [(secφ)^3*sinφ] dφ 0 ----------------------------------------------------------------- 其中(上面只是說明為什麼我會有這個問題,這裡才是問題) ----------------------------------------------------------------- ∫(secφ)^3*sinφ] dφ ----------------------------------------------------------------- =∫tanφ(secφ)^2 dφ ----------------------------------------------------------------- 而d(tanφ)=(secφ)^2 dφ ----------------------------------------------------------------- 故 ∫tanφ(secφ)^2 dφ ----------------------------------------------------------------- =∫tanφd(tanφ) ----------------------------------------------------------------- =(1/2)(tanφ)^2 ----------------------------------------------------------------- ----------------------------------------------------------------- 代回原式 arccos(2/7) 2π*3√5*7^3 - 2π*(2/3)∫ (secφ)^3*sinφ] dφ 0 -----------------------------------------------------------------] =2π*3√5*7^3 - 2π*(2/3)[(1/2)*(tan(arccos(2/7)))^2 - (1/2)*(tan0)^2] ----------------------------------------------------------------- =2π*3√5*7^3 - 2π*(2/3)[(1/2)*(3√5/2)^2 - (1/2)*(tan0)^2] ----------------------------------------------------------------- 天啊! 為什麼會出現tan0啊(暈 第五題教過嗎? 誰來救救我啊!(吶喊) (發現換回windows就有積分符號可以打了 不過還是沒有偏微分...) ※ 編輯: benimut 來自: 61.231.8.26 (06/13 22:36)

06/13 22:47, , 1F
你打得好辛苦喔!
06/13 22:47, 1F

06/13 23:20, , 2F
有看有推!
06/13 23:20, 2F

06/14 11:34, , 3F
為什麼不能有tan0
06/14 11:34, 3F

06/14 11:37, , 4F
因為tan0不存在吧
06/14 11:37, 4F

06/14 11:44, , 5F
tan0=0 tan(π/2)才不存在
06/14 11:44, 5F

06/14 15:05, , 6F
說的也是 看來我耍白痴花了這麼多時間精力啊(汗)
06/14 15:05, 6F

06/14 15:10, , 7F
:那這個答案(2744√5π-45)/4似乎相當扯 有人算出來嗎?
06/14 15:10, 7F

06/14 15:10, , 8F
或者說這種算法到底對還是錯뀠
06/14 15:10, 8F

06/14 15:50, , 9F
我另外用
06/14 15:50, 9F

06/14 15:51, , 10F
F={(x,y,z)|0 <=r<= √(7^2 - z^2),0 <=θ<= 2π,2<=z<=7}
06/14 15:51, 10F

06/14 15:51, , 11F
------------------------------------------------------
06/14 15:51, 11F

06/14 15:51, , 12F
7
06/14 15:51, 12F

06/14 15:52, , 13F
2π∫ √(7^2 - z^2)dz
06/14 15:52, 13F

06/14 15:52, , 14F
2
06/14 15:52, 14F

06/14 15:53, , 15F
------------------------------------------------------
06/14 15:53, 15F

06/14 15:53, , 16F
let z = 7sinφ
06/14 15:53, 16F

06/14 15:53, , 17F
√(7^2 - z^2) = 7cosφ
06/14 15:53, 17F

06/14 15:54, , 18F
φ = arcsin(z/7)
06/14 15:54, 18F

06/14 15:54, , 19F
dz = 7cosφ
06/14 15:54, 19F

06/14 15:54, , 20F
代回原式
06/14 15:54, 20F

06/14 15:54, , 21F
π/2
06/14 15:54, 21F

06/14 15:54, , 22F
2π∫ [(7cosφ)^2]dφ
06/14 15:54, 22F

06/14 15:55, , 23F
arcsin(z/7)
06/14 15:55, 23F

06/14 15:55, , 24F
------------------------------------------------------
06/14 15:55, 24F

06/14 15:55, , 25F
π/2
06/14 15:55, 25F

06/14 15:55, , 26F
2π*7^2∫ [(cos2φ + 1)/2]dφ
06/14 15:55, 26F

06/14 15:56, , 27F
arcsin(z/7)
06/14 15:56, 27F

06/14 15:56, , 28F
------------------------------------------------------
06/14 15:56, 28F

06/14 15:56, , 29F
π/2
06/14 15:56, 29F

06/14 15:56, , 30F
=2π*7^2[1/2sin2φ + 1/2φ]
06/14 15:56, 30F

06/14 15:56, , 31F
arcsin(z/7)
06/14 15:56, 31F

06/14 15:57, , 32F
------------------------------------------------------
06/14 15:57, 32F

06/14 15:57, , 33F
π/2
06/14 15:57, 33F

06/14 15:57, , 34F
=2π*7^2[sinφcosφ + 1/2φ]
06/14 15:57, 34F

06/14 15:57, , 35F
arcsin(z/7)
06/14 15:57, 35F

06/14 15:58, , 36F
------------------------------------------------------
06/14 15:58, 36F

06/14 15:58, , 37F
=-84√5 + 49π - arcsin(2/7)
06/14 15:58, 37F

06/14 15:58, , 38F
答案竟然不同啊
06/14 15:58, 38F

06/14 16:10, , 39F
辛苦了!
06/14 16:10, 39F
文章代碼(AID): #18KcsF6z (NTUBIME100HW)
文章代碼(AID): #18KcsF6z (NTUBIME100HW)