周輕鬆考古題

看板NTUBA95study作者 (洗衣精≠沐浴乳)時間22年前 (2003/09/08 16:40), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/3 (看更多)
Ⅰ. A. Determine the discontinuities,if any of the following function: ┌ 2x+1 , x≦0 f(x)= │ 1 , 0<x≦1 └ x平方+1 , x>1 B.Show that sinx 1-cosx (a)lim ─── =1 (b)lim ──── = 0 x→0 x x→0 x Ⅱ. A.Find f'(1) give that ┌ x平方 , x≦1 f(x)= │ └ 2x-1 , x>1 B.Let ┌ x平方-x ,x≦2 f(x)= │ └ 2x-1 ,x>2 (a)Show that f is continuous at 2 (b)Find f'_(2) and f'+(2) Ⅲ. A.Two functions f and g are said to be inverse functions if (f。g)(x)=x and (g。f)(x)=x Let f and g be differentiable. Show that if f and g are inverse functions, 1 then f'(y)= ─── , where y=g(x) ,provided g'(x)≠0 g'(x) d r r-1 B.Show that ── X = rX , r any rational number. dx Ⅳ. Let f be differentiable on (a,b) and continuous on 〔a,b〕. A.Prove that if there is a constant M such that f'(x)≦M for all xε(a,b), then f(b)≦ f(a)+M(b-a). B.Prove that if there is a constant m such that f'(x)≧m for all xε(a,b), then f(b)≧ f(a)+m(b-a). Ⅴ.Sketch the grapf of the function f(x)=2sin三次方x+3sinx, xε〔0,π〕. -- ※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw) ◆ From: 61.219.19.69
文章代碼(AID): #_N41-4h (NTUBA95study)
文章代碼(AID): #_N41-4h (NTUBA95study)