[試題] 108-1 李克強 工程數學一 期末考

看板NTU-Exam作者 (GanHuaWang)時間6年前 (2020/01/18 19:49), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
課程名稱︰工程數學一 課程性質︰化工系大二必修 課程教師︰李克強 開課學院:工學院 開課系所︰化工系 考試日期(年月日)︰2020年1月10日 考試時限(分鐘):130分鐘 是否需發放獎勵金:是 試題 : (試題最後面有給一堆Laplace轉換公式還有J0(x)和Y0(x)的表格,不怕寫不出來) (一)Use Laplace transform to solve the ODE-IVPs (A)y"+4y=δ(t)+u(t-2) ;y(0)=0, y'(0)=1 10% (B)y"+y=sin(t)-u(t-4π)sin(t-4π) ;y(0)=0, y'(0)=0 10% (C)y"+2y'+y=sint+δ(t-π) ;y(0)=0, y'(0)=0 10% (D)Use the convolution theorem to solve the following ODE-IVP 10% y"+3y'+2y=cost ;y(0)=1,y'(0)=0 (二)Find the first three non-zero terms of each of the two linearly-indepedent series solutions of the following ODE y"-2xy'+10y=0,-∞<x<∞ 20% (三)Find the solution of the follow ODE x^2*y"+xy'+4x^2*y=0 subject to the following boundary conditions y(1/2)=1, y(1)=2 and 1/2=<x=<1 What is the value of y(3/4)? (取兩位有效數字或以符號表示) 15% (四) (A)Show that x=0 is a regular point of the ODE xy"+2xy'+6e^xy=0 and find the two roots of the indical equation 5% ∞ (B)Solve for the Frobenius solution y(x)=Σam*x^(m+r) corresponding to the "Larger root". Obtain the first three non-zero term 10% m=0 (五)Determine the general solution of the following ODE that is vaild in any inerval not including the singular point 10% (x-2)^2*y"+5(x-2)y'+8y=0 (Hint:you can also try t=x-2 if you like) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.40.252.187 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1579348171.A.3A4.html
文章代碼(AID): #1U8l3BEa (NTU-Exam)
文章代碼(AID): #1U8l3BEa (NTU-Exam)