看板 [ Math ]
討論串[代數] 不等式證明一題請教
共 3 篇文章
首頁
上一頁
1
下一頁
尾頁

推噓1(1推 0噓 0→)留言1則,0人參與, 最新作者zyymat (Power Beauty)時間9年前 (2016/04/08 08:55), 編輯資訊
0
1
0
內容預覽:
很暴力的答案. 通分,只要指出 x^2(y+1) + y^2(x+1) >= xy(x+1)(y+1)即可. 事實上,. x^2(y+1) + y^2(x+1) - xy(x+1)(y+1). = (x-y)^2 +xy(x-y)^2 /4 + xy[1-(x+y)^2/4]. --. 發信站:

推噓1(1推 0噓 0→)留言1則,0人參與, 最新作者FAlin (君への嘘)時間9年前 (2016/04/07 20:35), 編輯資訊
0
1
0
內容預覽:
由柯西不等式. x y x y 2. (------ + ------)((x+1)+(y+1))≧(√(---)+√(---)). y(x+1) x(y+1) y x. 再由算幾不等式. x y. √(---)+√(---) ≧ 2. y x. 2^2 4. 所求 原式 ≧ -----------

推噓2(2推 0噓 0→)留言2則,0人參與, 最新作者revengeiori (大笨宗)時間9年前 (2016/04/07 19:52), 編輯資訊
0
1
0
內容預覽:
如題,. http://imgur.com/Dr8Qlqr. 完全沒想法,請問一下板上前輩QQ. --. 發信站: 批踢踢實業坊(ptt.cc), 來自: 122.116.158.130. 文章網址: https://www.ptt.cc/bbs/Math/M.1460029940.A.C9
首頁
上一頁
1
下一頁
尾頁