PTT
網頁版
登入/註冊
新聞
熱門文章
熱門看板
看板列表
作者查詢
最新文章
我的收藏
最近瀏覽
看板名稱查詢
批踢踢 PTT 搜尋引擎
看板
[
Math
]
討論串
[微積] 圖形面積
共 3 篇文章
排序:
最新先
|
最舊先
|
留言數
|
推文總分
內容預覽:
開啟
|
關閉
|
只限未讀
首頁
上一頁
1
下一頁
尾頁
#3
[微積] 圖形面積
推噓
1
(1推
0噓 1→
)
留言
2則,0人
參與
,
最新
作者
Keyouka
(初)
時間
8年前
發表
(2017/06/23 23:32)
,
編輯
資訊
0篇文章回應此文
0
內文有0個圖片
image
0
內文有0個連結
link
0
內容預覽:
求拋物線y=3x^+1的圖形與X軸及二直線x=0,x=2,所圍成區域的面積為何?. 先謝過大家了,有嘗試作圖,無奈都跟答案對不上,答案是10,求過程. -----. Sent from JPTT on my HTC_M10h.. --.
※
發信站:
批踢踢實業坊(ptt.cc),
來自:
42.7
#2
Re: [微積] 圖形面積
推噓
1
(1推
0噓 0→
)
留言
1則,0人
參與
,
最新
作者
Honor1984
(希望願望成真)
時間
11年前
發表
(2014/07/16 12:27)
, 11年前
編輯
資訊
0篇文章回應此文
0
內文有0個圖片
image
0
內文有1個連結
link
1
內容預覽:
兩函數自己就可以圍區域了. f(x)和x軸所圍區域. 0 3. = ∫-x^3 dx + ∫x^3 dx. -2 0. = -(1/4)[-16] + (1/4)[81]. g(x)和x軸所圍區逾. 3. = ∫ x^2 dx. -2. = (1/3)[27 + 8]. 兩函數所圍區域. 0 1 3
(還有249個字)
#1
[微積] 圖形面積
推噓
0
(0推
0噓 0→
)
留言
0則,0人
參與
,
最新
作者
a5150593
(YCLegend)
時間
11年前
發表
(2014/07/16 11:24)
,
編輯
資訊
0篇文章回應此文
0
內文有0個圖片
image
0
內文有1個連結
link
1
內容預覽:
令f(x)=x^3. g(x)=x^2. x=-2~3. 求兩函數和X軸所圍面積. 請問要如何解?黎曼?. 謝謝. --. Sent from my Android. --.
※
發信站:
批踢踢實業坊(ptt.cc),
來自:
140.136.90.133
.
※
文章網址:
http://www.
首頁
上一頁
1
下一頁
尾頁