看板 [ Math ]
討論串[微積] 拋物線與切線問題
共 2 篇文章
首頁
上一頁
1
下一頁
尾頁

推噓1(1推 0噓 0→)留言1則,0人參與, 最新作者Liuying (流螢)時間14年前 (2012/03/06 13:52), 編輯資訊
0
0
0
內容預覽:
y=x^2-2(a+3)x+a^2+8a. =[x-(a+3)]^2 +2a -9. 頂點為(a+3, 2a-9). 恆在 2x-y=15直線上.. 這些拋物線開口大小固定, 可以想成沿著2x-y=15平移,. 所以共同切線的斜率為2. 令a=-3, 所得的拋物線為y=x^2-15 解出斜率為2的切

推噓0(0推 0噓 0→)留言0則,0人參與, 最新作者Intercome (今天的我小帥)時間14年前 (2012/03/06 11:26), 編輯資訊
0
0
0
內容預覽:
若a屬於實數,使一拋物線方程式為 y=x^2-2(a+3)x+a^2+8a恆與一條直線L相切. 求此直線L方程式為?. 配方後,帶已知切線斜率求切線方程式,可是會卡在a似乎消不掉. 不知有沒有高手可以提供想法或解法呢? 謝謝~~. --. 發信站: 批踢踢實業坊(ptt.cc). ◆ From:
首頁
上一頁
1
下一頁
尾頁