Re: [機統] 求p.d.f

看板Math作者 (牛排‧起司)時間5年前 (2020/09/28 09:06), 5年前編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《Aquarkbrain (腦容量只有夸克)》之銘言: : 題目:Choose two points on the unit circle randomly. Find the probability density of the length of the chord connecting the two points. : 不曉得如何下手 謝謝指教 設A(1,0), B(cost, sint), 0 < t < 2pi d = AB = 2sin(t/2) 其實就是假設AO,BO夾角為t p.d.f. of t = f(t) = 1/(2pi) (假設t為任一值的機率相同) P(d≦k) = P(2sin(t/2)≦k), 0 < k ≦ 2 若 2sin(t/2)≦k, 則 t≦2arcsin(k/2) 但此時 0 < t ≦ pi, 2sin(t/2)在(0,2pi)之間對稱於t=pi P(2sin(t/2)≦k) = 2P(t≦2arcsin(k/2)) = 2∫f(t) dt, from 0 to 2arcsin(k/2) = 2arcsin(k/2) / pi f(k) = d (2arcsin(k/2) / pi) / dk = (2/pi) * (0.5/sqrt(1-k^2/4)) = 2/(pi*sqrt(4-k^2)) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 131.179.60.193 (美國) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1601255217.A.8F8.html ※ 編輯: cheesesteak (131.179.60.193 美國), 09/28/2020 09:18:38
文章代碼(AID): #1VSJSnZu (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
機統
0
6
完整討論串 (本文為第 2 之 2 篇):
機統
0
6
文章代碼(AID): #1VSJSnZu (Math)