
Re: [代數] 多元方程式因式分解

: 想要請教一下這類方程式因式分解有沒有一定方式可以依循
: 另外還有怎麼確定該多項式是不可再分解的
我不知道是不是有跡可循,總之就做吧ow o
(a) consider a = x, b = 2y, c = 3
then by the formula a^3 + b^3 + c^3 - 3abc we have
x^3 + 8y^3 - 18xy + 27
= (x + 2y + 3) (x^2 + 4y^2 + 9 - 2xy - 3x - 6y)
the latter term is
x^2 - (2y+3)x + (4y^2-6y+9) in R[x], where R=Z[y]
if it is reducible, then it can factorize into (x - p(y))(x - q(y))
thus p(y)q(y) = 4y^2-6y+9 and p(y) + q(y) = 2y+3, which has no solution
(b) x^3 + 3x^2y - 2y^3
consider t^3 + 3t^2 - 2 = (t+1)(t^2+2t-2), we have
x^3 + 3x^2y - 2y^3
= (x + y)(x^2 + 2xy - 2y^2)
a similar method can prove that the latter term is irreducible
(c) x^2 - 3xy^2 + 2y^2
irreducible by similar method
(d) x^2 - 2zx - xy - 2yz
= x^2 - (2z+y)x - 2yz in T[x], where T = Z[y, z]
irreducible by similar method
(e) x^3 + 2(y-z)x^2 + (x-z)y^2 + (x+y)z^2 - 3xyz
= x^3 + 2(y-z)x^2 + (y^2 -3yz + z^2)x - yz(y-z) in T[x]
if it is reducible, then it must has a factor out of
x +- y, x +- z, x +- (y-z), x +- yz, ... etc.
try x = y gives nonzero polynomial
try x = -y gives 0, thus x + y is a factor
continue we have
= (x + y)(x - z)(x + y - z)
reference: wolframalpha :D
--
嗯嗯ow o
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.4
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1525005044.A.002.html
推
04/29 20:44,
7年前
, 1F
04/29 20:44, 1F
→
04/29 20:44,
7年前
, 2F
04/29 20:44, 2F
→
04/29 22:30,
7年前
, 3F
04/29 22:30, 3F
→
04/30 00:12,
7年前
, 4F
04/30 00:12, 4F
推
04/30 05:24,
7年前
, 5F
04/30 05:24, 5F
→
04/30 11:47,
7年前
, 6F
04/30 11:47, 6F
→
04/30 11:47,
7年前
, 7F
04/30 11:47, 7F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):