
Re: [微積] 高斯散度定理的證明

∫(div f) dV = ∫(f dot n_hat) dS
V S
div f = 2x + 2y + 2z
左式
1 1 1
=∫∫∫ (2x + 2y + 2z) dxdydz
0 0 0
1 1 1
=∫∫ (x^2 + 2xy + 2xz)| dydz
0 0 0
1 1
=∫∫ (1 + 2y + 2z) dydz
0 0
1 1
=∫ (y + y^2 + 2yz)| dz
0 0
1
=∫ (1 + 1 + 2z) dz
0
1
= (2z + z^2)|
0
= 3
右式
= 6個面積分相加
上面 (n_hat = k, z = 1)
1 1
=∫∫(z^2) dxdy
0 0
= z^2
= 1
下面 (n_hat = -k, z = 0)
1 1
=∫∫(-z^2) dxdy
0 0
= -z^2
= 0
右面 (n_hat = j, y = 1)
1 1
=∫∫(y^2) dxdz
0 0
= y^2
= 1
左面 (n_hat = -j, y = 0)
1 1
=∫∫(-y^2) dxdz
0 0
= -y^2
= 0
後面 (n_hat = i, x = 1)
1 1
=∫∫(x^2) dydz
0 0
= y^2
= 1
前面 (n_hat = -i, x = 0)
1 1
=∫∫(-x^2) dydz
0 0
= -x^2
= 0
右式 = 六個面加起來 = 1 + 0 + 1 + 0 + 1 + 0 = 3
--
推
01/14 20:50,
01/14 20:50
推
01/14 20:50,
01/14 20:50
推
01/14 20:50,
01/14 20:50
推
01/14 20:50,
01/14 20:50
推
01/14 20:50,
01/14 20:50
→
01/14 20:51,
01/14 20:51
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 218.161.55.240
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1497178501.A.6AE.html
推
06/11 23:40, , 1F
06/11 23:40, 1F
討論串 (同標題文章)