Re: [分析] 級數收斂
※ 引述《BrowningZen (BrowningZen)》之銘言:
: a我硬是用integral test避開了問題,請問有其他方法嗎?
: 請問b要怎麼做呢,除了把整條式子變成a的形式後就沒有頭緒了
: 謝謝各位
: http://i.imgur.com/b3vpWTg.jpg

(a) if k > 1 then
1 1 1 1 1 1
--- + --- + --- + --- + ... + --- + --- + ...
1^k 2^k 3^k 4^k 7^k 8^k
1 1 1 1 1 1
< --- + --- + --- + --- + ... + --- + --- + ... converges
1^k 2^k 2^k 4^k 4^k 8^k
可以查Cauchy condensation test
(b) Let t = beta/2
There exists some natural number N0 such that
|b_(k+1)|
k > N0 implies k(--------- - 1) < - 1 - t
|b_k|
1+t
Then |b_(k+1)| < |b_k| (1 - ---)
k
M
Now let a_k = -----------
(k-1)^(1+t)
a_(k+1) k-1 1+t
Then ------- = (---)^(1+t) > (1 - ---)
a_k k k
(by binomial theorem and alternating series)
Then |b_k| < a_k implies
1+t
|b_(k+1)| < a_k (1 - ---) < a_(k+1)
k
choose a_1 > |b_1| and some a_2 = M > |b_2|
Then above gives an induction prove for |b_k| < a_k for all k
sum a_k converges by (a)
--
嗯嗯ow o
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.105
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1493909656.A.F08.html
→
05/04 22:56, , 1F
05/04 22:56, 1F
推
05/04 23:18, , 2F
05/04 23:18, 2F
→
05/05 23:19, , 3F
05/05 23:19, 3F
→
05/05 23:20, , 4F
05/05 23:20, 4F
Let t = beta/2
There exists some natural number N0 such that
| |b_(k+1)| |
k > N0 implies | k(--------- - 1) - (- 1 - 2t) | < t
| |b_k| |
拆絕對值 把(-1-2t)往右丟過去
※ 編輯: Desperato (140.112.25.105), 05/06/2017 03:09:24
→
05/07 01:11, , 5F
05/07 01:11, 5F
討論串 (同標題文章)