
Re: [中學] 高中數學兩題


: 圖中9,12可以請教一下怎麼解嗎
9.
令E: x/a + y/b + z/c = 1
則a, b, c分別為x, y, z軸截距
由於要在第一卦限圍成四面體,a, b, c應該都大於0
且四面體的體積為abc/6
代點得到 3/a + 2/b + 5/c = 1
由算幾不等式 (3/a + 2/b + 5/c)/3 >= [(3/a)(2/b)(5/c)]^(1/3)
1/27 >= 30/(abc), abc/6 <= 135
等於的條件為3/a = 2/b = 5/c = 1/3, (a, b, c) = (9, 6, 15)
因此E: x/9 + y/6 + z/15 = 1
題目中給的答案是錯的,那個方程式根本不過點(3, 2, 5)
12.
L1和L2交點顯然是O(1, 3, -4)
L1方向向量v1 = (2, 1, -2)
L2方向向量v2 = (6, -2, 3)
在L1上找一點A使得OA = v1
在L2上找一點B使得OB = -v2
會取-v2的原因是要確定 OA.OB < 0 (鈍角)
現在考慮OAB三角形,作角AOB的角平分線交AB於D
則 |AD| : |DB| = |AO| : |OB| = 3 : 7
因此 OD = (7/10)OA + (3/10)OB = (-4/10, 13/10, -23/10)
角平分線方程式 (x-1)/(-4) = (y-3)/(13) = (z+4)/(-23)
--
嗯嗯ow o
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 101.12.132.76
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1491666999.A.B19.html
推
04/09 00:02, , 1F
04/09 00:02, 1F
推
04/09 00:05, , 2F
04/09 00:05, 2F
→
04/09 00:05, , 3F
04/09 00:05, 3F
→
04/09 00:05, , 4F
04/09 00:05, 4F
→
04/09 00:06, , 5F
04/09 00:06, 5F
→
04/09 00:07, , 6F
04/09 00:07, 6F
→
04/09 00:08, , 7F
04/09 00:08, 7F
→
04/09 00:08, , 8F
04/09 00:08, 8F
討論串 (同標題文章)