[線代] ║A║=║A^*║ 證明從定義下手
Let A€M_n(F):={square matrix consisting of elements in field F=R or C}
and ║A║:= sup{│Av│:│v│=1, v€F^n}
Then ║A║=║A^*║, where A^* is conjugate transpose of A
這個如果用"A(A^*)與(A^*)A有相同的特徵方程式"這個定理
就可以用║A║^2 = largest eigenvalue of A^*A 來秒殺
一般都是這樣證的嗎?? 會不會殺雞用牛刀了@@??
感覺有從定義做的可能性,即觀察<Av,Av>之類的
謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.255.240.224
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1491495755.A.F1E.html
→
04/07 02:37, , 1F
04/07 02:37, 1F
→
04/07 02:37, , 2F
04/07 02:37, 2F
→
04/07 02:38, , 3F
04/07 02:38, 3F
→
04/07 03:00, , 4F
04/07 03:00, 4F
→
04/07 03:00, , 5F
04/07 03:00, 5F
→
04/07 10:18, , 6F
04/07 10:18, 6F
→
04/08 04:01, , 7F
04/08 04:01, 7F
→
04/08 16:33, , 8F
04/08 16:33, 8F