[分析] 多變數連續可微性

看板Math作者 (BrowningZen)時間9年前 (2016/04/29 19:07), 9年前編輯推噓4(4010)
留言14則, 2人參與, 最新討論串1/1
f:R^n ---> R^m Prove if df_i/dx_k (a) exists for every i,k and df_i/dx_k is continuous,then f is total differentiable . 一直都想不出 麻煩各位大大了>< -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 218.102.77.110 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1461928043.A.BD3.html ※ 編輯: BrowningZen (218.102.77.110), 04/29/2016 19:12:15

04/29 19:25, , 1F
證m=1即可 用Mean value theorem 高微課本有
04/29 19:25, 1F

04/29 19:37, , 2F
為什麼只需要m=1呢 是用數學歸納法嗎? 不好意思我沒
04/29 19:37, 2F

04/29 19:37, , 3F
有課本 感謝大大回答
04/29 19:37, 3F

04/29 19:39, , 4F
因為f=(f_1,...,f_m), f_i:R^n→R^1
04/29 19:39, 4F

04/29 19:40, , 5F
f differentiable <=> f_i differentiable i=1~n
04/29 19:40, 5F

04/29 19:45, , 6F
喔喔好清楚! 真的太感謝了
04/29 19:45, 6F

04/29 19:49, , 7F
對了 Apostol證明時有放弱條件到其中一個f_i只要在
04/29 19:49, 7F

04/29 19:50, , 8F
a點各階偏導數存在即可 其他n-1個還是要在周圍定義
04/29 19:50, 8F

04/29 19:50, , 9F
且連續。
04/29 19:50, 9F

04/29 19:57, , 10F
以n=2,a=(0,0)來說
04/29 19:57, 10F

04/29 19:58, , 11F
f(x,y)-f(0,0)-(f_x(0,0)x+f_y(0,0))中多拆出
04/29 19:58, 11F

04/29 19:58, , 12F
f(0,y)-f(0,y) 去做搭配 n=3就多拆一次
04/29 19:58, 12F

04/29 19:59, , 13F
f(0,y,z)-f(0,y,z)+f(0,0,z)-f(0,0,z)
04/29 19:59, 13F

04/29 19:59, , 14F
拆完後分類各自用Mean value theorem
04/29 19:59, 14F
文章代碼(AID): #1N8q1hlJ (Math)