Re: [微積] 請教ln的微分

看板Math作者 (Gladys von Wackenheim)時間9年前 (2016/03/22 13:23), 9年前編輯推噓1(104)
留言5則, 3人參與, 最新討論串2/2 (看更多)
※ 引述《shingetsu (shingetsu)》之銘言: : Find the derivative of ln[(ln x^4)^3] ln[ ln(x^4)^3 ]' = 1/(ln(x^4)^3) * [ln(x^4)^3]' = 1/(ln(x^4)^3) * 3*ln(x^4)^2 * [ln(x^4)]' = 1/(ln(x^4)^3) * 3*ln(x^4)^2 * 1/x^4 * [x^4]' = 1/(ln(x^4)^3) * 3*ln(x^4)^2 * 1/x^4 * 4x^3 = 12x^3*ln(x^4)^2 / (x^4*ln(x^4)^3) = 12 / (x*ln(x^4)) -- Because the flower will bloom for somebody... Welcome to the Eiden's Island! A place to find what you want! However, those can take only one... only one... so decide what's you only one! *Edelweiss by Overdrive -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 97.90.206.74 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1458624184.A.701.html ※ 編輯: softseaweed (97.90.206.74), 03/22/2016 13:27:05

03/22 13:27, , 1F
可以先化簡成 3ln(4) + 3 ln(ln(x)) 比較不會計算
03/22 13:27, 1F

03/22 13:27, , 2F
錯誤
03/22 13:27, 2F

03/22 14:58, , 3F
答案寫 3/x ln x 錯了嗎
03/22 14:58, 3F

03/22 15:23, , 4F
分母 ln(x^4)換成 4l n(x)就一樣了
03/22 15:23, 4F

03/22 19:59, , 5F
謝謝! 沒注意到
03/22 19:59, 5F
文章代碼(AID): #1MyDQuS1 (Math)
討論串 (同標題文章)
文章代碼(AID): #1MyDQuS1 (Math)