
Re: 工數] 一階線性常微分方程式 求解

: 解到這邊 卡住了
: 無法分部 哪裡出了問題呢?
dy +tan(x)ydx = (cosx)dx
sin(x)
dy + ─── y dx = (cosx)dx
cos(x)
cos(x)dy- yd[cos(x)] = (cosx)^2 dx
cos(x)dy-yd[cos(x)]
────────── = dx
(cosx)^2
y y
d(──) =dx => ─── = x+k => y=xcos(x)+kcos(x) , K=const
cosx cosx
※另解
y' +tan(x)y =cos(x)
let P(x)=tan(x), Q(x)=cos(x)
I(x)=exp(∫P(x)dx)=exp(∫tan(x)dx)=sec(x)
I(x)y(x) = ∫I(x)Q(x)dx +k , k=const
sec(x)y(x)= ∫sec(x)cos(x)dx +k
sec(x)y(x) = ∫dx +k
sec(x)y(x)= x+k
y(x) = x(cosx) + kcos(x)
--
Logic can be patient for it is eternal. ----- Oliver Heaviside
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.32.247.47
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1446825008.A.14D.html
※ 編輯: Heaviside (114.32.247.47), 11/06/2015 23:58:09
推
11/07 00:36, , 1F
11/07 00:36, 1F
推
11/07 01:44, , 2F
11/07 01:44, 2F
→
11/07 19:59, , 3F
11/07 19:59, 3F
→
11/07 20:00, , 4F
11/07 20:00, 4F
→
11/07 20:00, , 5F
11/07 20:00, 5F
推
11/07 23:14, , 6F
11/07 23:14, 6F
推
11/08 00:28, , 7F
11/08 00:28, 7F
推
11/09 14:01, , 8F
11/09 14:01, 8F
推
11/14 14:24, , 9F
11/14 14:24, 9F
推
08/29 01:35, , 10F
08/29 01:35, 10F
推
10/20 17:02, , 11F
10/20 17:02, 11F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):