[線代] 請問一題線性系統的證明
Let A be an m*n matrix,and let c be a column vector such that
Ax=c has a unique solution.
If m>n,must the system Ax=b be consistent for every choice of b?
Sol:
If m>n,then the final row of H has all zero entries where A~H and H
has row echelon form.
Let en be the final column of the n*n identity matrix.
Reversing the elementary row operations that reduce A to H,
we see that [H│en] ~ [A│b],and the system Ax=b is therefore inconsistemt.
請問一下這題,H 是 m*n的矩陣且m>n,en是n*1的矩陣,那[H│en]最下面那一列
不是會少一個元素嗎? 那這樣這個augmented matix的表示是對的嗎?
有點不太懂怎麼表達我的疑問...
解答它是想找一個無解的情形逆推回去發現能找到一個b與之對應來說明嗎?
還是有其他證明寫法或是能簡單以白話文說明。
真的感激不盡。謝謝。
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.248.77.66
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1443545084.A.473.html
推
09/30 07:26, , 1F
09/30 07:26, 1F
→
09/30 07:27, , 2F
09/30 07:27, 2F
→
09/30 07:28, , 3F
09/30 07:28, 3F
→
09/30 07:31, , 4F
09/30 07:31, 4F
→
09/30 07:33, , 5F
09/30 07:33, 5F
→
09/30 07:37, , 6F
09/30 07:37, 6F
→
09/30 07:41, , 7F
09/30 07:41, 7F
→
09/30 07:42, , 8F
09/30 07:42, 8F
→
09/30 07:43, , 9F
09/30 07:43, 9F
→
09/30 08:03, , 10F
09/30 08:03, 10F
→
09/30 08:03, , 11F
09/30 08:03, 11F
→
09/30 08:04, , 12F
09/30 08:04, 12F
→
09/30 08:06, , 13F
09/30 08:06, 13F
→
09/30 08:07, , 14F
09/30 08:07, 14F
→
09/30 08:08, , 15F
09/30 08:08, 15F
→
09/30 08:10, , 16F
09/30 08:10, 16F
→
09/30 08:11, , 17F
09/30 08:11, 17F
→
09/30 13:00, , 18F
09/30 13:00, 18F