Re: [工數] laplace+階梯函數+第二位移

看板Math作者 (希望願望成真)時間10年前 (2015/05/14 01:27), 編輯推噓1(101)
留言2則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《initialpp (沒檔頭)》之銘言: : 又卡題,求大大幫忙,先謝過!! : y"+5y'+6y=?(t-1/2ㄦ)+u(t-ㄦ)cos t : ?=delta : ㄦ=拍,就是3.14那個拍.. : (以上兩個符號我打不出來ㄅ歉) : 再次謝過~~ y" + 5y' + 6y = δ(t - π/2) + u(t - π)cos(t) 設y(0) = a, y'(0) = b [Ys^2 - sa - b] + 5[Ys - a] + 6Y = exp(-sπ/2) - exp(-sπ)s/(s^2 + 1) [s^2 + 5s + 6]Y = as + 5a + b + exp(-sπ/2) - exp(-sπ)s/(s^2 + 1) 1 1 Y = [------ _ -----][as + (5a + b) + exp(-sπ/2) - exp(-sπ)s/(s^2 + 1)] s + 2 s + 3 a(s + 5/2) + (5a + 2b)(1/2) + 2(1/2)exp(-sπ/2) = -------------------------------------------------- (s + 5/2)^2 - 1/4 exp(-sπ) s + --------------------------- s^2 + 1 => y(t) = a exp(5t/2) cosh(t/2) + (5a + 2b) exp(5t/2) sinh(t/2) + 2 u(t - π/2)exp(5t/2) sinh(t/2) + cos(t) u(t - π) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.249.181.31 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1431538030.A.0B0.html

05/17 00:39, , 1F
先謝謝大大,忘了說有IC xD
05/17 00:39, 1F

05/17 00:39, , 2F
y(0)=0,y'(0)=0
05/17 00:39, 2F
文章代碼(AID): #1LKubk2m (Math)
文章代碼(AID): #1LKubk2m (Math)