

: 如圖 兩題
: 跪求神人解惑
: 看起來很簡單,但是到底缺了什麼條件
: -----
: Sent from JPTT on my Gigabyte GSmart Maya M1 v2.
28.
如圖:http://ppt.cc/uHXx
在AD線段外找一點E,使△ADE與△ABO全等
在CD線段外找一點F,使△CDF與△CBO全等
因此 ∠EDA+∠ADC+∠CDF = ∠OBA + 90°+∠CBO = 180°
即 E-D-F 三點共線
連接OE線段、OF線段
∠OEA = ∠OAD + ∠DAE = ∠OAD + ∠BAO = ∠BAD = 90°
因此OE線段 = √(3^2+3^2) = 3√2
同理,∠OCF = 90°,OF線段 = √2
在△OEF中,
OE線段 = 3√2、OF線段 = √2、EF線段 = 4
OF^2 + EF^2 = OE^2
因此∠OFE = 90°
正方形ABCD的面積 = 五邊形AOCFE的面積
= △AOE + △EOF + △FOC
= 3*3/2 + 4*(√2)/2 + 1*1/2
= 5 + 2√2
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 163.32.66.190
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1430284362.A.B0E.html
→
04/29 13:18, , 1F
04/29 13:18, 1F
→
04/29 13:18, , 2F
04/29 13:18, 2F
→
04/29 13:19, , 3F
04/29 13:19, 3F

→
04/29 13:19, , 4F
04/29 13:19, 4F
→
04/29 13:19, , 5F
04/29 13:19, 5F
→
04/29 13:20, , 6F
04/29 13:20, 6F
→
04/29 13:20, , 7F
04/29 13:20, 7F
→
04/29 13:20, , 8F
04/29 13:20, 8F
→
04/29 13:21, , 9F
04/29 13:21, 9F
→
04/29 13:23, , 10F
04/29 13:23, 10F
推
04/29 13:24, , 11F
04/29 13:24, 11F
→
04/29 13:24, , 12F
04/29 13:24, 12F
→
04/29 13:24, , 13F
04/29 13:24, 13F
→
04/29 13:25, , 14F
04/29 13:25, 14F
→
04/29 13:30, , 15F
04/29 13:30, 15F
→
04/29 13:30, , 16F
04/29 13:30, 16F
→
04/29 13:30, , 17F
04/29 13:30, 17F
→
04/29 13:30, , 18F
04/29 13:30, 18F
推
04/29 13:31, , 19F
04/29 13:31, 19F
→
04/29 13:31, , 20F
04/29 13:31, 20F
推
04/30 11:05, , 21F
04/30 11:05, 21F
討論串 (同標題文章)