Re: [分析] f(x,y) continuous
※ 引述《GSXSP (Gloria)》之銘言:
Prove or disprove that
If f(x,y) bounded and continuous in (x,y), then Int_{y \in A } f(x,y) dy is continuous in x.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 166.170.48.149
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1414787482.A.40C.html
→
11/01 07:45,
11/01 07:45
→
11/01 08:12,
11/01 08:12
→
11/02 02:12,
11/02 02:12
Add a constraint f(x,y) \in R, real function
→
11/02 07:10,
11/02 07:10
→
11/02 07:12,
11/02 07:12
int_{y\in R} (x/√π)exp(-y^2/x^2) dy
= x^2 is continuous
did I miss something?
※ 編輯: GSXSP (132.239.223.126), 11/06/2014 02:00:51
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 132.239.223.126
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1415239895.A.1B5.html
→
11/06 23:12, , 1F
11/06 23:12, 1F
→
11/06 23:13, , 2F
11/06 23:13, 2F
→
11/06 23:13, , 3F
11/06 23:13, 3F
→
11/06 23:17, , 4F
11/06 23:17, 4F
→
11/07 00:00, , 5F
11/07 00:00, 5F
→
11/07 00:02, , 6F
11/07 00:02, 6F
→
11/07 00:03, , 7F
11/07 00:03, 7F
→
11/09 13:05, , 8F
11/09 13:05, 8F
→
11/09 13:06, , 9F
11/09 13:06, 9F
→
11/09 13:06, , 10F
11/09 13:06, 10F
討論串 (同標題文章)
完整討論串 (本文為第 2 之 2 篇):