[機統] 請問一題統計
We consider a random sample X1,X2,...,Xn from a distribution with pdf
f(x;θ) = (1/θ)exp(-x/θ) , 0<x<無限大 , zero elsewhere , where 0<θ.
Possibly , in a life-testing situation, however ,
we only observe the first r order statistics Y1<Y2<...<Yr.
(a) Record the joint pdf of these order statistics and denote it by L(θ).
︿
(b) Under these conditions, find the mle, θ, by maximizing L(θ).
︿
(c) Find the mgf and pdf of θ.
︿
(d) With a slight extension of the definition of sufficiency, is θ a
sufficient statistic?
(a)(b)小題已算出答案:
r
(a) [n!/(n-r)!][1/(θ^r)]exp[(-1/θ)(Σ yi + (n-r)yr)]
i=1
r
(b) (Σ yi + (n-r)yr)/r
i=1
想問(c)(d)這兩個小題
(c)小題完全不會算
︿
(d)小題我的想法是,用(a)和(c)算出來的結果,看f(y1,y2,..,yr;θ)/[pdf of θ]
︿
如果最後跟θ無關,則θ是充份統計,不知道這樣對不對?
我還有另一個想法,就是直接將(a)小題的[Σ(i=1~r)yi + (n-r)yr]這部份,
︿ ︿
換成rθ,則整個式子會變成只用θ和θ表示,沒有其他y出現,
︿
然後根據分解定理(Neyman),可知θ是充份統計。這樣對嗎?
但如果是用第二種想法,這樣(c)小題好像就沒意義了...
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 220.129.6.131
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1403864255.A.8D5.html
※ 編輯: asaaaas (220.129.6.131), 06/27/2014 18:23:35
討論串 (同標題文章)