Re: [分析] 反拉氏轉換

看板Math作者 (Jacque)時間11年前 (2014/02/26 14:36), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《ToMoveJizz ( )》之銘言: : s/(s^4+a^4)的反拉氏轉換,a>0 令a^4 = 4b^4, 分子改成4b^2s, 導出來好看一些. s^4 + 4b^4 = (s^4 + 4b^2s^2 + 4b^4) - 4b^2s^2 = (s^2+2b^2)^2 - (2bs)^2 = (s^2 - 2bs + 2b^2)(s^2 + 2bs + 2b^2) 4b^2s/(s^4 + 4b^4) = 4b^2s/((s^2 - 2bs + 2b^2)(s^2 + 2bs + 2b^2)) = b/(s^2 - 2bs + 2b^2) - b/(s^2 + 2bs + 2b^2) = b/((s-b)^2 + b^2) - b/((s+b)^2 + b^2) L^{-1}[b/((s-b)^2 + b^2)](t) = e^{bt} sin(bt) L^{-1}[b/((s+b)^2 + b^2)](t) = e^{-bt} sin(bt). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 163.22.18.20
文章代碼(AID): #1J3OjMlH (Math)
討論串 (同標題文章)
文章代碼(AID): #1J3OjMlH (Math)