[微積] 一些問題

看板Math作者 (小強)時間12年前 (2014/02/06 18:20), 編輯推噓0(002)
留言2則, 2人參與, 最新討論串1/2 (看更多)
sin(πx) 1.If f(x)=exp(g(x)), where g(x)=∫ √(1+t^2)dt. find f'(1) 0 2.The base of a solid is the ellipse x^2+4y^2=4, and every parallel cross sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid? 3.Let S be the surface of the solid E that lies above the cone z=√(x^2+y^2) and below the sphere x^2+y^2+z^2=z and F(x,y,z)=(z,y,sin(x+y)). Evaluate ∫∫ F‧dS =? S 4.Use the formula x^x=e^(xlnx) and the Maclaurin series for e^x to derive the formula 1 x ∞ n-1 n ∫ x dx= Σ((-1) )/(n ) 0 0 5.Let f(x,y)=8xy-2x-4y+5. Find the absolute minimum value of the function f(x,y) in the set D, where D is the region bounded by the parabola y=x^2 and the line y=4. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 210.66.246.68

02/06 22:39, , 1F
課本都有,說說哪裡不會吧
02/06 22:39, 1F

02/07 07:43, , 2F
第3題要怎算阿?
02/07 07:43, 2F
※ 編輯: stman 來自: 210.66.246.68 (02/07 08:04)
文章代碼(AID): #1Iys7aj9 (Math)
文章代碼(AID): #1Iys7aj9 (Math)