定理敘述:
Suppose (X,d) is a complete metric space, Y is contained in X,
and d is the restriction of d,
Y
the space (Y,d ) is a complete metric space <=> Y is a closed subset of X
Y
∞
課本證明從右邊證到左邊時,一開始直接令{Xn} be a Cauchy sequence in (Y,d )
n=1 Y
為什麼可以直接這樣令呢?怎麼知道(Y,d )會存在Cauchy sequence呢?
Y
謝謝大家!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.136.211.108
推
12/01 17:33, , 1F
12/01 17:33, 1F
推
12/01 17:35, , 2F
12/01 17:35, 2F
→
12/01 17:38, , 3F
12/01 17:38, 3F
→
12/01 17:39, , 4F
12/01 17:39, 4F
→
12/01 17:45, , 5F
12/01 17:45, 5F
→
12/01 17:46, , 6F
12/01 17:46, 6F
※ 編輯: James1114 來自: 140.136.211.115 (12/01 17:55)
推
12/01 19:15, , 7F
12/01 19:15, 7F
→
12/01 19:16, , 8F
12/01 19:16, 8F
→
12/01 19:18, , 9F
12/01 19:18, 9F
→
12/01 19:19, , 10F
12/01 19:19, 10F
→
12/01 19:19, , 11F
12/01 19:19, 11F
→
12/01 19:20, , 12F
12/01 19:20, 12F
→
12/01 19:21, , 13F
12/01 19:21, 13F
→
12/01 19:21, , 14F
12/01 19:21, 14F
→
12/01 19:22, , 15F
12/01 19:22, 15F
→
12/01 19:22, , 16F
12/01 19:22, 16F
→
12/02 00:56, , 17F
12/02 00:56, 17F
→
01/02 15:37,
7年前
, 18F
01/02 15:37, 18F
→
07/07 11:41,
6年前
, 19F
07/07 11:41, 19F