Re: [代數] 一題數論證明

看板Math作者 (Paul)時間12年前 (2013/03/21 12:44), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串3/3 (看更多)
※ 引述《inwa (話太多)》之銘言: : 請問若a、b為互質正整數 : 如何證明ab-a-b不可能寫成ax+by(其中x、y為非負整數) : 且ab-a-b+k(k為任意正整數)可以寫成ax+by(其中x、y為非負整數) : 感激不盡 a=1 trivial assume a >=2 assume b >= a+1 we know if ax+by=1 then if (x,y)=(p,q) is a solution then (x,y)=(p-bt,q+at) is also a solution hence, we may take 1 <= y <= a-1 --------------------------------------------- ax+by=ab-a-b+1 a(x-b+1)+b(y+1)=1 we may take 1 <= y+1 <= a-1 then b <= b(y+1) <= b(a-1) 1-b(a-1) <= 1-b(y+1) 1-b(a-1) <= a(x-b+1) 1-ab+b <= ax -ab + a ax >= 1+b-a > 0 ------------------------------------------ ax+by=k is straightforward ------------------------------------------ a=1 trivial a>=2 b>=a+1 if ax+by=ab-a-b then a(x-b+1)+b(y+1)=0 x-b+1=bk , y+1=-ak y >= 0, then k <= -1 x-b+1<=-b, x<=-1 -- 老梗題 old question -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.194.96.239 ※ 編輯: JohnMash 來自: 123.194.96.239 (03/21 16:52)

03/21 20:59, , 1F
thx a lot
03/21 20:59, 1F
文章代碼(AID): #1HIf0oP2 (Math)
討論串 (同標題文章)
文章代碼(AID): #1HIf0oP2 (Math)