Re: [線代] maxium norm

看板Math作者 (八字-風水-姓名學)時間13年前 (2013/01/27 19:02), 編輯推噓1(107)
留言8則, 3人參與, 最新討論串2/2 (看更多)
※ 引述《asdc20 (asdc20)》之銘言: : Prove the following inequality used in verifying the maximum norm for : R3. : max{|x1|+|y1|,|x2|+|y2|,|x3|+|y3|} <= max{|x1|,|x2|,|x3|}+max{|y1|,|y2|,|y3|} : 先謝謝各位的回覆...... Let |xj|+|yj| be the largest number of the left hand side. Since |xj| <= max{|x1|,|x2|,|x3|} and |yj| <= max{|y1|,|y2|,|y3|}, we have |xj|+|yj| <= max{|x1|,|x2|,|x3|}+max{|y1|,|y2|,|y3|}. This completes the proof. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.169.99.81

01/27 19:08, , 1F
"="我可以理解,但為會啥小於? xj+yj已是最大數,
01/27 19:08, 1F

01/27 19:09, , 2F
max{|x1|,|x2|,|x3|}和max{|y1|,|y2|,|y3|}
01/27 19:09, 2F

01/27 19:10, , 3F
不就等於|xj|+|yj|?
01/27 19:10, 3F

01/27 19:12, , 4F
why? xj+yj 是 {xk+yk} 裡的最大
01/27 19:12, 4F

01/27 19:12, , 5F
不一定就 xj 是{xk}裡面最大且 yj 是 {yk} 裡最大
01/27 19:12, 5F

01/27 19:13, , 6F
x1=0, x2=1, x3=1; y1=100, y1=0, y3=0
01/27 19:13, 6F

01/27 19:20, , 7F
謝謝您
01/27 19:20, 7F

01/27 19:22, , 8F
取 x1=0,x2=1,x3=2,y1=100,y2=99,y3=98等號不成立.
01/27 19:22, 8F
文章代碼(AID): #1H1GbP08 (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
線代
0
3
完整討論串 (本文為第 2 之 2 篇):
線代
0
3
文章代碼(AID): #1H1GbP08 (Math)