Re: [中學] 包含高斯符號之方程

看板Math作者 (Bineapple)時間13年前 (2012/11/10 21:57), 編輯推噓1(101)
留言2則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《shingai (shingai)》之銘言: : 對於一題方程式沒有頭緒 : 有請知道的高手分享一下此題的概念 : 題目是這樣的 sum{n=1,10,[x/n!]}=2012 的所有整數解 : 坦白說 : 高斯符號讓我腦袋塞車了 冏 假設有一解為a f(x)=sum{n=1,10,[x/n!]} f遞增且f(2012)>2012 如果n>6 [2012/n!]=0 所以考慮g(x)=sum{n=1,6,[x/n!]}就好了 先考慮拿掉高斯符號的h(x)=sum{n=1,6,x/n!}=(720+360+120+30+6+1)x/720=1237x/720 所以 1237a/720-5 < 2012 <= 1237a/720 得到 1172<=a<=1174 直接手算得到a=1173 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 126.61.58.199 ※ 編輯: bineapple 來自: 126.61.58.199 (11/10 22:00) ※ 編輯: bineapple 來自: 126.61.58.199 (11/10 22:04)

11/11 09:10, , 1F
想請教一下倒數第三行之不等式 是如何產生的?!
11/11 09:10, 1F
1237a/720=h(a)>=g(a)=2012 (拿掉高斯符號之後數字只有可能變大) 另一邊則是因為g(a)等於把h(a)的後五項加上高斯符號 (第一項a/1不用考慮 因為a/1是整數 加上高斯符號不會變) 每一項加上高斯符號之後可能會減少的值會小於1 因此g(a)會比h(a)-5還大 得到 2012 = g(a) > f(a)-5 = 1237a/720-5 (原本我寫成>= 不過其實用>就可以了 已修改) ※ 編輯: bineapple 來自: 126.21.114.47 (11/11 13:43)

11/24 11:51, , 2F
g(a)=2012-sum(7,20,[a/n!]) 吧?
11/24 11:51, 2F
文章代碼(AID): #1GdbrIpR (Math)
文章代碼(AID): #1GdbrIpR (Math)