[分析] 點集拓墣
我已經證下列這件事:
-------------------------------------------
M is metric space, A is a nonempty subset of M , a€A
if
boundary of A (denoted by bd(A)) is nonempty
then
d(a,bd(A)) = inf{d(a,x),x€bd(A)} > 0
iff
a€int(A) (there exists r > 0 , s.t. D(a:r) is a subset of A)
--------------------------------------------
想證明兩件事(A)、(B) (條件同上)
(A):if d(a,bd(A)) > 0
then (1) r <= d(a,bd(A))
(2) r can be d(a,bd(A))
(3) r cannot be bigger than d(a,bd(A))
(B):if a€int(A)
then (1) r <= d(a,bd(A))
(2) r can be d(a,bd(A))
(3) r cannot be bigger than d(a,bd(A))
已經想很久了..不知道怎麼估,在R^n空間畫圖蠻顯然的...
不知道是不是因為有反例才證不出來??
感謝幫忙!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 1.171.11.61
→
10/03 02:23, , 1F
10/03 02:23, 1F
→
10/03 04:57, , 2F
10/03 04:57, 2F
推
10/03 09:00, , 3F
10/03 09:00, 3F
→
10/03 09:03, , 4F
10/03 09:03, 4F
→
10/03 09:04, , 5F
10/03 09:04, 5F
推
10/03 09:08, , 6F
10/03 09:08, 6F
推
10/03 09:14, , 7F
10/03 09:14, 7F
→
10/03 09:14, , 8F
10/03 09:14, 8F
反例是:M = (-inf,-1) U {0} U (1,+inf)
A = [-3,-2] U {0} U [2,3]
bd(A) = {-3,-2,2,3}
for a = 0 € A , a€int(A)
and d(0,bd(A)) = 2
but D(0;d(0,bd(A))) = D(0;2) = (-2,-1) U {0} U (1,2)
is not a subset of A
※ 編輯: znmkhxrw 來自: 140.114.81.83 (10/03 13:18)
推
10/03 16:07, , 9F
10/03 16:07, 9F
推
10/03 16:12, , 10F
10/03 16:12, 10F