[微積] critical point

看板Math作者 (可可)時間13年前 (2012/07/08 22:38), 編輯推噓1(102)
留言3則, 1人參與, 最新討論串1/2 (看更多)
有幾題 Calculus 問題,想要請教版上的大大 (1) Consider the function f(x)=xcos(x). Graph y=f(x) on the interval [-2pi,2pi] and find the equation for all critical points in R and determined whether they are minimal, maxima, or neither. 想法: 解 f'(x)=0, 可以得到 critical point, 故 cos(x)-xsin(x)=0 tan(x)=1/x, 再來就不知道要怎樣解該方程式的解. 也不知道要怎樣 進一步check 是局部極大 OR 局部極小. (2) Let's say you start from the base of a mountain at 6 am, and walk up at any speed so that you arrive at 6 pm. The next day, you take exactly the same path and descend the mountain, again starting at 6 am and arriving at the base at 6 pm. Is there necessarily a time of day when you were at the same point on the mountain, both days? (Use Intermediate Value Theorem to justify your answer) 想法: 是 上山的畫一條 時間和海拔高度的 curve 下山的再畫一條,然後說兩條 curve 會相交就好了嗎? 那這樣應該沒有用到 intermediate value theorem? 謝謝@@ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.159.53

07/10 16:48, , 1F
1.你開始證明 -2π~2π 之間的 x 值滿足 tanx = 1/x
07/10 16:48, 1F

07/10 16:49, , 2F
最簡單的方法就是畫圖
07/10 16:49, 2F

07/10 16:49, , 3F
畫 tanx , 同一張圖上畫 1/x 交點就是解
07/10 16:49, 3F
文章代碼(AID): #1F-Pjo9o (Math)
文章代碼(AID): #1F-Pjo9o (Math)