Re: [中學] 101臺師大附中教師甄試一題
※ 引述《rehearttw (易懷)》之銘言:
: 請問各位前輩一題,101臺師大附中數學科教師甄試最後一題:
: P(a,b) 在 x^2 + y^2 = 5 上
: 求滿足 log ( b - a ) - log ( 3b - 5a) = 0 的所有點 P。
: 2 8
: Ans:(-√5,0) 、 (1,2) 、 (1/√2 , 3/√2)
提供另一個計算方法作參考:
令x = log ( b - a ) = log ( 3b - 5a)
2 8
則 b - a = 2^x = k > 0
3b - 5a = 8^x = k^3
解聯立可得 2a = 3k - k^3 , 2b = 5k - k^3 .....(*)
又a^2 + b^2 = 5 , 通分成4a^2 + 4b^2 = 20
方便(*)式代入整理可得到k^6 - 8k^4 + 17k^2 - 10 = 0
上式可分解成(k^2 - 1)(k^2 - 2)(k^2 - 5) = 0
解得 k = 1 or √2 or √5 , 代回(*)式即可得到答案
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.24.86.55
推
05/23 05:09, , 1F
05/23 05:09, 1F
推
05/23 15:06, , 2F
05/23 15:06, 2F
→
05/23 15:07, , 3F
05/23 15:07, 3F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 4 之 4 篇):