Re: [微積] 99中興轉考

看板Math作者時間13年前 (2012/04/24 20:24), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《dreamenjoy (今天也很爽)》之銘言: : n 2 : 1. Find the limit lim Σ [Sin (iπ/n)] π/n : n→∞ i=1 ~~~~~~~ ~~~~~~~~~~~~~ ~~~~~ 取和 高度 x 寬度 = 面積 考慮sin^2(x)在0~pi的黎曼和(這要靠一點經驗啦...最好畫圖輔助) pi 原式= S sin^2(x) dx = pi/2 0 S是積分符號 : 8.Let a1 = 4 and an+1 = 1/2(an+4/an), for n >= 1. Find lim an if it exists. : n→∞ : (這題我算答案是2 不知道對不對?) 想辦法證它收斂後代 lim an+1 = lim an = L n->inf n->inf 解得L=2 : 9. A store has been selling 200 DVD burners a week at $350 each. : A market survey indicates that, for each $10 rebate offered to buyers, : the number of units sold will increase by 20 a week. : (1) Find the demand (or price) function and the revenue function. : [hint: the demand function p(x) stands for the price : per unit that the company can change if it sells x units. : The revenue function is defined by R(x) = xp(x), : if the company sells x units.] : (2) How large a rebate should the store offer to maximize its revenue? (350-10n)(200+20n) (單位價格)(個數) 假設200+20n=x 則n=(x-200)/20 =>p(x)= (450-x/2)*x R(x)=(450-x/2)*x^2 接下來就簡單了,我相信你會寫 : 10.Suppose that a bug is located on the hyperbolic paraboloid z = y^2 -x^2 : at the point (1,1,0) In what direction should it move for the steepest : climb and what is the slope as it starts out? : 麻煩各位大大了 先說我兩小題我都不太清楚.. 第一小題我完全不會(遮臉) 第二小題應該是這樣 z=f(x,y)=y^2-x^2 固定y=1,f(x,1)=1-x^2(只考慮x方向) 所以fx(1,1)=-2 (x方向的斜率) 同理fy(1,1)=2 (y方向的斜率) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.91.60 ※ 編輯: luke2 來自: 140.113.91.60 (04/24 20:33)

04/25 01:18, , 1F
感謝!
04/25 01:18, 1F
文章代碼(AID): #1Fbfk3EO (Math)
討論串 (同標題文章)
文章代碼(AID): #1Fbfk3EO (Math)