Re: [其他] 拓樸學證明

看板Math作者 (Tasuku)時間14年前 (2012/03/10 12:36), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/3 (看更多)
※ 引述《NTUEEboy ( NTUEE)》之銘言: : prove: An isolated point of S is a boundary point of S^c : 不知道有沒解答一番 : 謝謝喔 Let p be an isolated point of S. Then there exists a neighborhood B of p such that (B\{p})∩S is empty. Hence B\{p} is contained in the complement of S. For any neighborhood N of p, (N\{p})∩(B\{p}) is nonempty so (N\{p})∩S^c containing (N\{p})∩(B\{p}) is nonempty. Thus p is a limit point of S^c. Moreover since p is not an interior point of S^c, we conclude that p is a boundary point of S^c. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 134.208.26.13
文章代碼(AID): #1FMjeoSs (Math)
討論串 (同標題文章)
文章代碼(AID): #1FMjeoSs (Math)