Re: [線代] 對角化(台大資工)
※ 引述《mqazz1 (無法顯示)》之銘言:
: 1. Let A in R^(3*3)
: [1 1 1] [2 0 0] T [x] [x]
: P = [2 3 3], if AP = P[0 1 0] and A [y] = [y]
: [1 3 4] [0 0 -1] [1] [1]
: then (x,y) = ?
: [ 1 2 3 4 ] 3 2
: 2. H = [ 5 6 7 8 ]. suppose H = aH + bH + cI, a,b,c in R
: [ 9 10 11 12 ]
: [13 14 15 16 ]
: (a,b,c) = ?
: 這題應該是C-H 可是很難算
: 請問有人知道這兩題怎麼解嗎?
: 謝謝
rank H = 2, so c=0 and
[1 0]
H = [1 1][1 2 3 4] = A*B
[1 2][4 4 4 4]
[1 3]
BA= [10 20]
[16 24]
with minimal polynomial t^2 - 34t -80=0.
since H^k=A(BA)^(k-1)B, so H^3=34H^2+80H.
so (a,b,c)=(34,80,0)
若有另一組解(a,b,c), 則 H^2=kH for some k.
這個算幾項就知道不可能了
PS.這題也可以找null space的基底來做
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 76.94.119.209
推
02/23 12:59, , 1F
02/23 12:59, 1F
→
02/23 13:25, , 2F
02/23 13:25, 2F
→
02/23 13:25, , 3F
02/23 13:25, 3F
→
02/23 13:28, , 4F
02/23 13:28, 4F
推
02/23 13:33, , 5F
02/23 13:33, 5F
→
02/23 13:33, , 6F
02/23 13:33, 6F
→
02/23 13:37, , 7F
02/23 13:37, 7F
→
02/23 13:38, , 8F
02/23 13:38, 8F
推
02/24 23:56, , 9F
02/24 23:56, 9F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 3 篇):