[代數] 幾題代數

看板Math作者 (坦帕灣光芒)時間14年前 (2012/01/10 22:34), 編輯推噓0(002)
留言2則, 1人參與, 最新討論串7/7 (看更多)
1.Compute the indicated quantities for the given homomorphism ∮ Ker(∮)and∮(20) for ∮:Z→Z10 such that ∮(1)=6 2.Let G be any group and let "a" be any element of G. Let∮:Z→G be defined by ∮(n)=a^n Describe the image and the possibilities for the kernal of ∮. 3.Let G and G' be groups,and let H and H' be normal subgroups of G and G' respectively.Let ∮ be a homomorphism of G into G'. Show that ∮ induces a natural homomorphism ∮*:(G/H)→(G'/H') if ∮[H]屬於H' 4.Classify the given group according to the fundmental theorem of finitely generated abelian group. (Z4*Z8)/(<1,2>) 5.Show that if H is a subgroup of index 2 in a finite group G,then every left coset of His also a right coset of H. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.43.147.137

01/10 23:13, , 1F
課本習題期末要考? 把定義看清楚 應該有類似例題
01/10 23:13, 1F

01/10 23:13, , 2F
不難 加油
01/10 23:13, 2F
文章代碼(AID): #1F34ncUi (Math)
文章代碼(AID): #1F34ncUi (Math)